This document describes the entry of equations into the Stat-Ease 360 simulator.
Note: For more examples of entering simulation equations, see here.
Standard polynomials in terms of the factors can be entered. These take the form of intercept + coefficients times a term.
50 + 6A + 7B – 15AB
Categoric factors have two forms. These examples are based on a three-level factor A and a four-level factor B and their interaction.
50 + {6,-2}A + {-2,-1,1}B + {12, -4, 8, -3, -1,0}AB
This method is shorter and matches the simulator for version 8 and earlier.
50+6 * A[1]-2 * A[2]-2 * B[1]-1 * B[2]+1 * B[3]+12 * A[1]B[1]-4 *
A[2]B[1]+8 * A[1]B[2]-3 * A[2]B[2]-1 * A[1]B[3]+0 * A[2]B[3]
This version matches Stat-Ease 360 9 and later ANOVA model output.
Functions must be entered using lower case letters; variable IDs can be either lowercase or capitals
Functions take the form of <function name>(function or factor ID or number). The parentheses are required.
Name |
Explanation |
---|---|
sin |
sine function |
cos |
cosine function |
tan |
tangent function |
asin |
arcsine function |
acos |
arccosine function |
atan |
arctangent function |
sinh |
hyperbolic sine function |
cosh |
hyperbolic cosine function |
tanh |
hyperbolic tangent function |
asinh |
hyperbolic arcsine function |
acosh |
hyperbolic arccosine function |
atanh |
hyperbolic arctangent function |
log2 |
logarithm to the base 2 |
log10 |
logarithm to the base 10 |
log |
logarithm to the base 10 |
ln |
logarithm to base e (2.71828…) |
exp |
e raised to the power of x |
sqrt |
square root of a value |
sign |
sign function -1 if x<0; 1 if x>0 |
rint |
round to nearest integer |
abs |
absolute value |
min |
min of all arguments |
max |
max of all arguments |
sum |
sum of all arguments |
avg |
mean value of all arguments |
logit |
log(p/(1-p)), 0 < p < 1 |
ilogit |
inverse logit (see also: sigmoid, expit, logistic function) |
To enter the absolute value of the sin function for A * B:
abs(sin(a*b)) - or - abs(sin(A*B)) - or even - abs(sin(A*b)) are all equivalent.
The following table lists the default binary operators supported by the parser.
Operator |
Meaning |
Priority |
---|---|---|
= |
assignment |
-1 |
&& |
logical and |
1 |
|| |
logical or |
2 |
<= |
less or equal |
4 |
>= |
greater or equal |
4 |
!= |
not equal |
4 |
== |
equal |
4 |
> |
greater than |
4 |
< |
less than |
4 |
+ |
addition |
5 |
- |
subtraction |
5 |
* |
multiplication |
6 |
/ |
division |
6 |
^ |
raise x to the power of y |
7 |
if-then-else operations as follows:
(x ? y : z) – Evaluate x, if x is true, do y, if x is false do z. Both the “if true” and “if false” actions must be specified.
Function |
Distribution |
---|---|
rnorm(μ, σ) |
Normal |
rlnorm(μ, σ) |
Log Normal |
rbinom(n, p) |
Binomial |
rnbinom(n, p) |
Negative Binomial |
rbernoulli(p), rbern(p) |
Bernoulli |
rf(df1, df2) |
Fisher F |
runif(a, b) |
Uniform |
rchisq(df) |
Chi-squared |
rgumbel(μ, β) |
Gumbel |
rpois(λ) |
Poisson |
rt(df) |
Student’s t |
rweibull(λ, k) |
Weibull |
rgamma(α, β) |
Gamma |
rexp(λ) |
Exponential |
rcauchy(x0, γ) |
Cauchy |
rgeom(p) |
Geometric |
rbeta(α, β) |
Beta |
Constant |
Description |
---|---|
_pi |
pi |
_e |
Euler’s number |
_c |
Speed of light in vacuum \((m*s^{-1})\) |
_h |
Planck’s Constant \((J*s)\) |
_hbar |
Reduced Planck’s Constant \((J*s)\) |
_G |
Newtonian constant of gravitation \((m^3*kg^{-1}*s^{-2})\) |
_k_B |
Boltzmann constant \((J*K^{-1})\) |
_N_A |
Avogadro constant \((mol^{-1})\) |
_epsilon_0 |
Electric constant or vacuum permittivity \((F*m^{-1})\) |
_mu_0 |
Magnetic constant or vacuum permeability \((N*A^{-2})\) |